EPA-DEM: DEM risk evaluator for **rapid water supply planning** in humanitarian crisis

噓。^^

USER'S MANUAL

Santiago Arnalich 02/2025

arnalich

water and habitat

About EPA-DEM

EPA-DEM is free and open-source program that enables **rapid water supply planning in humanitarian crises.** It evaluates the risk of using elevations obtained from commonly available digital elevation models (DEM) in hydraulic calculations performed with EPANET.

This can prove vital in **life-saving situations** where alleviating human suffering is key and there is an important **opportunity cost** in delaying water supply operations. Better decisions can be made in almost real time.

This program performs a **Monte Carlo risk analysis** on an EPANET file. It generates numerous derived files by randomly adjusting elevations in the original file according to a calibrated normal distribution. Then, it runs simulations of each file to identify those that would fail (pressure below a set threshold) and **returns the success rate**.

The software is provided "as is", without warranty of any kind, either expressed or implied¹.

Santiago Arnalich, February 2025

Table of contents

About EPA-DEM	2
Downloading	4
Installation	4
Starting EPA-DEM	5
Suggested user cases	5
Interface: analysis options	6
Exporting an INP in EPANET	7
Preparing the INP file	8
Running a simulation	9
Interpreting the result	10
Concepts involved	11
Acknowledgements	12

ACRONYMS

DEM: Digital Elevation Model EPANET: <u>https://www.epa.gov/water-research/epanet</u> INP: native format for an EPANET file n: number of simulations σ: Standard deviation

Downloading

EPADEM can be downloaded using the following link:

www.arnalich.com/dwnl/epadem.zip

Installation

EPADEM **does not require installation**. Just unzip the downloaded file in the location of your choice.

Four files and folders will appear beside this user's manual, with the following content:

- release: this is where the program files live
- **src**: contains the source code in case you want to make changes to this open source program.
- **Report section.txt** contains the text you will have to copy and paste into the INP EPANET file.
- **README.md** file is just that, a readme file.

2024Q2 - D2 EPADEM risk evaluator > Software > Soft > EPADEM-main					
Name	Туре	Size			
release	File folder				
src	File folder				
README.md	MD Document	2 KB			
report section.txt	Text Document	1 KB			

Figure 1. EPADEM's unzip file structure. The program is in the release folder.

Starting EPA-DEM

To start the program, open the release folder and click on the file called **EPADEM.exe**

Suggested user cases

The program can be used for:

- **1. Evaluating the risk** of a particular design to elevation inaccuracy.
- 2. Reducing the risk of designs by seeing the effect of design modifications on risk scores.
- **3. Stress test designs** using elevation as a proxy for other risks, for example, data inaccuracy.

> EPADEM-main > release	✓ [™] Search r	release	Q
Name	Date modified	Туре	Size
platforms	24/04/2024 20:23	File folder	
Sandbox	11/05/2024 16:07	File folder	
EPADEM.exe	24/04/2024 21:46	Application	64 KB
😰 epanet2.chm	24/04/2024 20:23	Compiled HTML H	623 KB
🚳 epanet2.dll	24/04/2024 20:23	Application exten	360 KB
📀 Epanet2w.exe	24/04/2024 20:23	Application	5,092 KB
libgcc_s_dw2-1.dll	24/04/2024 20:23	Application exten	114 KB
libstdc++-6.dll	24/04/2024 20:23	Application exten	1,521 KB
libwinpthread-1.dll	24/04/2024 20:23	Application exten	46 KB
notes.txt	24/04/2024 20:23	Text Document	4 KB
Qt5Core.dll	24/04/2024 20:23	Application exten	8,430 KB
🚳 Qt5Gui.dll	24/04/2024 20:23	Application exten	9,463 KB
Qt5Widgets.dll	24/04/2024 20:23	Application exten	8,975 KB
📧 runepanet.exe	24/04/2024 20:23	Application	108 KB
😰 tutorial.chm	24/04/2024 20:23	Compiled HTML H	99 KB
unins000.dat	24/04/2024 20:23	DAT File	5 KB
🗊 unins000.exe	24/04/2024 20:23	Application	2,499 KB

Figure 2. EPADEM.exe file is located inside the release folder.

Interface: analysis options

All the options available are displayed in a single dialogue box:

- **CPU core to use**: selecting a higher number from 1 to 4 speeds up the calculation process.
- Number of simulations to run: The more simulations, the more precise the result will be. More complicated files may take very long to evaluate. A minimum of 1000 simulations is recommended.
- DEM standard deviation: This is where the precision DEM used is introduced and can change with the geographic location, the topography and the presence absence of trees. To see charted values of different DEMs and recommendations on which one to use, visit: www.arnalich.com/EPADEM.html
- **Min. pressure value, m.** This is the threshold value below which a simulation has failed. You can start using Om and modifying your value to get a better sense of what your risk is. For example, values below Om may just indicate no flow at all (water does not go uphill), or just a reduction in the expected flow.
- Path to INP file: Location of the INP file to analyze.
- **Don't delete temp files**: Temporary files can be kept in the release/Sandbox folder for inspection.

EPA-DEM risk evaluat	or —		×	
CPU cores to use:	β		÷	
Number simulations to run:	1000		+	
DEM standard deviation:	1.00		+	
Min. pressure value, m	0.00		* *	
Path to INP file:		Find		
About: This program performs a Monte Carlo risk analysis on an EPANET file to assess the risk associated with using a digital elevation model (DEM). It generates numerous derived files by randomly adjusting elevations in the original file according to a defined normal distribution. Then it runs simulations of each file to identify those that would fail (pressure below a set threshold) and returns a success rate.				
Concept and contact: Santi Programmer: Yurii Rybachul	ago Arnalich www.arnalich.com/EPADEM.html k jrybachuck@gmail.com			
Don`t delete temp files		Run		

Figure 3. EPADEM's interface. Analysis options.

Exporting an INP in EPANET

After creating a model of the water network in EPANET using elevations obtained from a particular DEM and sizing all the components, it is time to export the file for the analysis.

In EPANET, go to File > Export > Network (see image 4) to export the EPANET input file (INP) needed for the simulations.

A dialogue box similar to that of any other program will prompt you to choose a name and a file location. That would be the location that you need to navigate to in the **Path to INP file** option.

Figure 4. Exporting the EPANET file to INP format.

Preparing the INP file

You need to open the INP with a text editor, such as Notepad in windows, and copy paste the text below into it. You can also find this text in the file *report section.txt* in the main folder.

Paste it as shown in image 5, just below the [TITLE] section and save the file and exit

[REPORT] Status No Summary No NODES All LINKS All FLOW PRECISION 4 ELEVATION PRECISION 4 HEAD PRECISION 4 PRESSURE PRECISION 4 Page 0

	📗 20231016 AEP OURANG Co	rrected v2.inp - Note	epad			-		×	
	File Edit Format View H	lelp							
	[TITLE]								^
r		2							
	NODES A11								
	LINKS All								
	FLOW PRECISION 4								
	ELEVATION PRECISION 4								
	HEAD PRECISION 4								
	PRESSURE PRECISION 4								
i,	Page 0)							
	;ID	Elev	Demand	Pa	attern		1		
	KV11	831	.86				3		
	RV14 PV/12	810	.00				÷		
	RV10	819	.00						
	RE2	824	.00						
	BF1	818	.86						
	BF3	819	.86				:		
	RV15	822	.86				-		
	RV16	821	.86				- 1		
	RV17	823	.86				;		
	RV18	822	.86				;		
	RV19	823	.86				;		
	BFV1	830	.86				;		
	BF4	823	.86				;		
	BF5	824	.86				;		
	BF7	825	.86				;		
	BF9	823	.86				;	. '	4
			1 - 16 - 0 - 1 - 62	1009/	Mindaux (CDLD)	UTE O			
			LN 10, COI 03	100%	WINDOWS (CRLF)	011-8			

Figure 4. Add the [REPORT] section in red.

Once you have selected the options in the dialogue, click run and wait for the program to finish. Depending on the complexity of the water network and the number of simulations chosen, this can take several minutes.

EPA-DEM risk evaluat	tor —		×		
CPU cores to use;	3		*		
Number simulations to run:	1000		* *		
DEM standard deviation:	1.00		* *		
Min, pressure value, m	0.00		* *		
Path to INP file:	isk evaluator/Sandbox/20231016 AEP OURANG Corrected v2.inp	Fir	nd		
About: This program performs a Monte Carlo risk analysis on an EPANET file to assess the risk associated with using a digital elevation model (DEM). It generates numerous derived files by randomly adjusting elevations in the original file according to a defined normal distribution. Then it runs simulations of each file to identify those that would fail (pressure below a set threshold) and returns a success rate. Concept and contact: Santiago Arnalich www.arnalich.com/EPADEM.html					
Programmer, rum kybachu	k ji yuacılıck (eginali. com		78%		
Don`t delete temp files	\sim	A RI	In		

Figure 5. EPA-DEM running the simulations.

Interpreting the result

We cannot eliminate uncertainty or risk completely. It is key to understand that we are trying to reduce the uncertainty in a cost-effective way. While it depends a lot on the appetite for risk, as guidance:

Success values of **95% and higher are low risk**. There are very likely when the original network has a lot of nodes (>100). There may be still some actions that can be taken, specially for networks with a small number of nodes. It is usually possible and simple to get to 100%. Even if your success rate is 100% it may be worth stress testing the design by increasing the Min. pressure value.

Values below 95% are risky, it is advisable to return to the EPANET file and try to make improvements on the original design.

Note that repeating the same analysis will yield slightly different results, especially when the number or simulations is low (<1000). This is completely normal.

Figure 6. EPA-DEM showing the result.

Concepts involved

The error between the real elevation and that of a DEM **follows a normal distribution** (see image on the right). This is the same distribution that describes variables in the real world, for example, a person's height. In this case, the mean describes the difference between the relative and the absolute elevations. The behavior of a water system depends on the difference in elevations, not their absolute value, so this parameter is not important for us.

What is key is the precision of the measurements, that is how different they are from the mean. This is measured with the **standard deviation**, σ . 68% of the points will fall between the values of 1σ , 95% between 2σ and 99.7% between 3σ . The Monte Carlo analysis calculates the probability of an event by repeating the experiment a large number of times. . For example, a spin of the casino's roulette, and hence the name. The larger this number, say 100000, the more the expected chance of success will be trustworthy.

EPA-DEM changes the elevations in an EPANET file randomly but following the probability function of a normal distribution creating a derived file. It repeats the process to create a large number of derived files. It then runs the simulation in EPANET to see if any point has a pressure below a certain threshold value deemed problematic. EPA-DEM plays in the Monte Carlo casino automatically to see the chances of success.

Figure 7. FABDEM 1.2 vs. total station error for Azraq, Jordan. The chances of a point having more than 1.8 error are very low, 0.003%.

Acknowledgements

Nosakhare Boadi for sparking the discussion and organizing a small-scale comparison of survey methods in Malawi.

Yurii Rybachuk for his invaluable programming skills.

Andrea Cippá for his help in comparing over 40,000 total station points against several DEMs to obtain their statistical parameters.

All those who have shared topographic surveys to calibrate the DEMs.

1. Legal disclaimer

This software is provided "as is," without any express or implied warranties, including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. The developers, creators, and distributors of this software shall not be held liable for any damages, losses, or costs, including but not limited to direct, indirect, incidental, special, consequential, or punitive damages, arising from the use or inability to use this software, even if advised of the possibility of such damages.

By using this software, you acknowledge and agree that you do so at your own risk. The developers make no representations or warranties regarding the accuracy, reliability, or suitability of the software for any particular purpose. It is your responsibility to test and verify the software before deploying it in any critical or operational setting.

In no event will the developers be liable for any damages or losses resulting from data loss, system failure, security breaches, or any other harm arising from the use of this software. This disclaimer applies to the fullest extent permitted by applicable law.